We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.
The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ...
Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.
Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.
Other cookies are those that are being identified and have not been classified into any category as yet.
Carlos is a theoretical researcher with wide experience in density functional theory calculations and high performance computing. He has developed his scientific carrier across several academic and research institutions, such as the Public University of Navarre, the Donostia International Physics Center (DIPC, San Sebastián), the Center of Materials Physics (CFM, San Sebastián), the University of the Basque Country, and the Institute of Advanced Materials (INAM, University of Jaume I, Castellón). His main scientific contributions belong to the fields of spintronics and semiconductor physics. His current research activity is the theoretical study of perovskite compounds and nanostructures for optoelectronic devices.
He is now working on the EU-funded project OHPERA HORIZON-EIC-2021-PATHFINDERCHALLENGES. The aim of the project is to achieve photoelectrochemical (PEC) H2 generation, using water as proton and electron source
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements