Unraveling Charge Transfer in CoFe Prussian Blue Modified BiVO4 Photoanodes

Catalyst modification of metal oxide photoanodes can result in markedly improved water oxidation efficiency. However, the reasons for improvement are often subtle and controversial. Upon depositing a CoFe Prussian blue (CoFe-PB) water oxidation catalyst on BiVO4, a large photocurrent increase and onset potential shift (up to 0.8 V) are observed, resulting in a substantially more efficient system with high stability. To elucidate the origin of this enhancement, we used time-resolved spectroscopies to compare the dynamics of photogenerated holes in modified and unmodified BiVO4 films. Even in the absence of strong positive bias, a fast (pre-ms), largely irreversible hole transfer from BiVO4 to CoFe-PB is observed. This process retards recombination, enabling holes to accumulate in the catalyst. Holes in CoFe-PB remain reactive, oxidizing water at a similar rate to holes in pristine BiVO4. CoFe-PB therefore enhances performance by presenting a favorable interface for efficient hole transfer, combined with the catalytic function necessary to drive water oxidation.

Moss, B.; Simone Hegner, F.; Corby, S.; Selim, S.; Francàs, L.; López, N.; Giménez, S.; Galán-Mascarós, J. R.; Durrant, J. R.

ACS Energy Lett. 2019, 4, 337-342
DOI: 10.1021/acsenergylett.8b02225

Associated ICIQ research group/s:

  • RESEARCH GROUP/S
    Prof. J.R. Galán-Mascarós
  • RESEARCH GROUP/S
    Prof. Núria López
Go to the journal
  • SHARE

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: