We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.
The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ...
Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.
Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.
Other cookies are those that are being identified and have not been classified into any category as yet.
In this work we report the binding properties of rotaxane 1 towards a series of tetraalkylammonium salts of Cl−, OCN− and NO3− anions in acetone and a CHCl3/MeOH solvent mixture. We used 1H NMR titrations and Isothermal Titration Calorimetry (ITC) experiments to monitor and analyze the binding processes. We compared the obtained results with those previously described by us in chloroform solution. In acetone solution, the determined binding constants for the 1 : 1 complexes were 1 to 3 orders of magnitude larger than those measured in chloroform, a less competitive solvent for hydrogen-bonding. The thermodynamic signatures of the binding processes in acetone, determined by ITC experiments, revealed favorable enthalpic and entropic contributions having similar magnitudes. These results suggested that solvation/desolvation processes in acetone play a significant role in the binding processes. Conversely, the addition of just 5% of methanol to chloroform solutions of 1 significantly reduces the magnitude of the binding constants of all studied ion-pairs. In this solvent mixture, the entropy term is also favorable but it does not compensate the experienced loss of binding enthalpy. Moreover, in acetone solution, the addition of the Cl− and OCN− tetraalkylammonium salts in excess (more than 1 equiv.) led to the immediate appearance of 2 : 1 complexes. Related high-stoichiometry complexes are not observed in the solvent mixture (CHCl3/MeOH 95/5). In chloroform, a large excess of the salt (> 6 equiv.) is required for its formation. From the analysis of the obtained binding data we infer that, in acetone and in CHCl3/MeOH mixture, the formed complexes are mainly anionic.
Molina-Muriel, R.; Romero, J. R.; Li, Y.; Aragay, G.; Ballester, P.
Org. Biomol. Chem. 2021, 19, 9986-9995
DOI:
10.1039/D1OB01845K
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements