The importance of discovering the true catalytically active species involved in photocatalytic systems allows for a better and more general understanding of photocatalytic processes, which eventually may help to improve their efficiency. Bi2O3 has been used as a heterogeneous photocatalyst and is able to catalyze several synthetically important visible-light-driven organic transformations. However, insight into the operative catalyst involved in the photocatalytic process is hitherto missing. Herein, we show through a combination of theoretical and experimental studies that the perceived heterogeneous photocatalysis with Bi2O3 in the presence of alkyl bromides involves a homogeneous BinBrm species, which is the true photocatalyst operative in the reaction. Hence, Bi2O3 can be regarded as a precatalyst which is slowly converted in an active homogeneous photocatalyst. This work can also be of importance to mechanistic studies involving other semiconductor-based photocatalytic processes.
Riente, P.; Fianchini, M.; Llanes, P.; Pericàs, M. A.; Noël, T.
Nat Commun 2021, 12, 625
DOI:
10.1038/s41467-020-20882-x
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements