We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.
The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ...
Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.
Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.
Other cookies are those that are being identified and have not been classified into any category as yet.
We report the synthesis and characterization of two water-soluble container compounds (cavitand hosts) with rigidified open ends. One cavitand uses four (CH2)4’s as spacers to bridge the adjacent walls, while another cavitand uses four CH2CH2OCH2CH2’s bridges and features a wider open end. The spacers preorganize the deep cavitands into vase-like, receptive shapes and prevent their unfolding to the unreceptive kite-like conformation. Cycloalkane guests (C6–C8) and small n-alkanes (C5–C7) form 1:1 complexes with the cavitands and move freely in the cavitands’ spaces. Hydrophilic compounds 1,4-dioxane, tetrahydrofuran, tetrahydropyran, pyridine, and 1-methylimidazole also showed good binding affinity to the new cavitands. Longer alkanes (C11–C14) and n-alcohols (C11–C16) are taken up with a −CH3 group fixed at the bottom of the cavity and the groups near the rim in compressed conformations. The methylene bridges appear to divide the cavitand into a narrow hydrophobic compartment and a broader space with exposure to the aqueous medium. Longer alkane guests (C15–C18), N,N-dimethyldioctylammonium, and dioctylamine induce the formation of capsules (2:1 host:guest complexes). The new cavitands showed selectivity for p/m-cresol isomers and xylene isomers. The cavitand with CH2CH2OCH2CH2 bridges bound long-chain α,ω-diols (C13–C15) and diamines in folded, U-shaped conformations with polar functions exposed to the aqueous medium. It was used to separate o-xylene from its isomers by using simple extraction procedures.
Yang, J. M.; Chen, Y. Q.; Yu, Y.; Ballester, P.; Rebek J. Jr.
J. Am. Chem. Soc. 2021, 143 (46), 19517–19524
DOI:
10.1021/jacs.1c09226
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements