A rational design of a tripodal receptor for the molecular recognition of tricarboxylate salts in aqueous media, based on squaramide, has been performed using high-level DFT calculations (RI-BP86/SVP level of theory) in solution using the COSMO treatment, including some preliminary ab initio calculations at the higher RI-MP2/TZVP level of theory, comparing the ability of squaramide to bind carboxylate salts with two widely used guanidinium salts. The tripodal receptor has been synthesized using a new methodology that has been recently reported by some of us, and its capability of recognizing several mono-, di-, and tricarboxylate salts has been studied experimentally by means of microcalorimetry experiments in a very high competitive media, H2O:EtOH 1:3. These experiments give enthalpic and entropic data, which are unfortunately scarce in the literature of molecular recognition of anions. Finally, a fluorimetric ensemble of the receptor with fluorescein has been found to be useful for the fluorimetric determination of zinc citrate in a commercial toothpaste using competition assays.
Rational Design, Synthesis, and Application of a New Receptor for the Molecular Recognition of Tricarboxylate Salts in Aqueous Media
J. Org. Chem. 2006, 71, 7185-7195.