Photo-assisted water oxidation by high-nuclearity cobalt-oxo cores: tracing the catalyst fate during oxygen evolution turnover

Multi-nuclear cobalt cores have been proposed as molecular analogues of the natural oxygen evolving complex, enabling water oxidation for artificial photosynthesis schemes and the production of solar fuels. In particular, cobalt containing polyoxometalates (Co-POMs) display a record activity as water oxidation catalysts (WOCs) in terms of the turnover number, turnover frequency, and quantum yield, when com- bined in a light activated oxygen evolving cycle with Ru(bpy)32+ (bpy = 2,2’-bipyridine) as the photosensi- tizer. The unique behavior of high-nuclearity cobalt clusters is addressed herein by employing Co-POMs with Co ≥9 as molecular WOCs. The temporal dissection of the catalytic events is framed herein to inves- tigate the initial photo-induced electron transfer (ET) occurring in the micro-to-millisecond time domain, and followed by the oxygen evolution kinetics taking place within a minute-to-hours regime. In particular, flash photolysis shows ET from the Co-POM to photogenerated Ru(bpy)33+ with well-behaved diffusional kinetics (bimolecular rate constants in the range kET = 2.1–5.0 × 109 M−1 s−1) and counting up to 32 ET events in a 60 ms timeframe. The evolution of the Co-POMs is then traced under oxygenic conditions, where infrared and X-ray absorption spectroscopy (XAS) indicate that POM based structures are compe- tent catalysts under the photo-assisted turnover regime.

M. Natali, I. Bazzan, S. Goberna-Ferrón, R. Al-Oweini, M. Ibrahim, B.S. Bassil, H. Dau, F. Scandola, J.R. Galán-Mascarós, U. Kortz, A. Sartorel, I. Zaharieva, M. Bonchio

Green Chem. 2017, 19, 2416-2426
DOI: 10.1039/c7gc00052a

Associated ICIQ research group/s:

  • RESEARCH GROUP/S
    Prof. J.R. Galán-Mascarós
Go to the journal
  • SHARE

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: