Ortho-substituted azobenzene: shedding light on new benefits

Novel functional polymeric microcapsules, based on modified azobenzene moieties, are exhaustively investigated, both from a theoretical and experimental points of view. Theoretical calculations and several measurements demonstrate that visible light can act as a trigger for release of encapsulated material, as a consequence of trans-cis isomerization which modifies microcapsule surface topography and can induce a “squeezing” release mechanism. Interfacial polymerization of an oil-in-water emulsion is performed and leads to core-shell microcapsules which are characterized by means of atomic force microscopy (AFM), optical microscopy (OM), scanning electron microscopy (SEM) and light scattering. These analyses put into evidence that microcapsules’ size and surface morphology are strongly affected by irradiation under visible light: moreover, these changes can be reverted by sample exposure to temperatures around 50°C. This last evidence is also confirmed by NMR kinetic analyses on modified azobenzene moiety. Finally, it is shown that these smart microcapsules can be successfully used to get a controlled release of actives such as fragrancies, as a consequence of visible light irradiation, as confirmed by an olfactive panel.

Random publication image

Del Pezzo, R.; Bandeira, N. A.G.; Trojanowska, A.; Fernandez Prieto, S.; Underiner, T.; Giamberini, M.; Tylkowski, B.

Pure Appl Chem. 2019, 91, (9), 1533-1546
DOI: 10.1515/pac-2018-0719

  • SHARE

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: