Mechanistic peculiarities of the N2O reduction by CH4 over Fe-silicalite

Transient isotopic studies in the temporal analysis of products (TAP) reactor evidenced the importance of the lifetime of oxygen species generated upon N2O decomposition on extraframework iron sites of Fe-silicalite for methane oxidation at 723 K. Fe-silicalite effectively activates CH4 when N2O and CH4 are pulsed together in the reactor. However, these oxygen species gradually become inactive for methane oxidation as the time delay between the N2O and CH4 pulses is increased from 0 to 2 s.

Random publication image

E. V. Kondratenko, J. Pérez-Ramírez

Catal. Today 2007, 119, 243-246

  • SHARE

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: