We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.
The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ...
Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.
Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.
Other cookies are those that are being identified and have not been classified into any category as yet.
Photoinduced organic transformations have stimulated the organic chemistry community to develop light-driven renewed reaction methodologies, which in many cases are complementary to standard thermal catalysis. This revitalization of photoinduced transformations is in part due to the straightforward access to powerful photosensitizers. Among them, Ru(II) and Ir(III) polypyridyl complexes have been extensively utilized as prototypical photoredox catalysts. Despite the flourishing of new organic reactivity, studies of photocatalytic cycles are still scarce. The current mechanistic proposal mostly relies on luminescence quenching studies, redox potentials, and bond-dissociation energy values, which provide an essential but partial picture of the catalytic processes. Besides, the quantum efficiency and overall energy efficiency of photoredox organic transformations are not usually considered merit yet. On the other hand, during the last few decades, the photochemistry community has studied the energy and electron transfer mechanism of transition metal complexes from the ground and the excited state extensively, with a partial address of the catalytic photoredox cycles probably due to their complexity. Those studies are needed to develop new photoredox organic transformations further and make them more sustainable and energy-efficient. In this review, we outline an overview of selected basic concepts of photophysics and photochemistry encountered in the photocatalytic cycles. Selected examples are detailed to illustrate how steady-state and time-resolved optical spectroscopy can be employed to elucidate catalytic intermediates and photocatalytic mechanisms. As such, this review aims to motivate mechanistic studies on photoredox catalysis and serves as a guide to perform them to develop more sustainable and energy-efficient chemical transformations.
Kandoth, N.; Pérez Hernández, J.; Palomares, E.; Lloret-Fillol, J.
Sustain. Energy Fuels 2021, 5, 638-665
DOI:
10.1039/D0SE01454K
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements