Cationic fac-[Re(CO)3(pz*H)(pypzH)]OTf (pz*H = pyrazole, pzH; 3,5-dimethylpyrazole, dmpzH; indazole, indzH; 3-(2-pyridyl)pyrazole, pypzH) were obtained from fac-[ReBr(CO)3(pypzH)] by halide abstraction with AgOTf and subsequent addition of the corresponding pyrazole. Successive deprotonation with Na2CO3 and NaOH gave neutral fac-[Re(CO)3(pz*H)(pypz)] and anionic Na{fac-[Re(CO)3(pz*)(pypz)]} complexes, respectively. Cationic fac-[Re(CO)3(pz*H)(pypzH)]OTf, neutral complexes fac-[Re(CO)3(pz*H)(pypz)], and fac-[Re(CO)3(pypz)2Na] were subjected to photophysical and electrochemical studies. They exhibit phosphorescent decays from a prevalently 3MLCT excited state with quantum yields (Φ) in the range between 0.03 and 0.58 and long lifetimes (τ from 220 to 869 ns). The electrochemical behavior in Ar atmosphere of cationic and neutral complexes indicates that the oxidation processes assigned to ReI → ReII occurs at lower potentials for the neutral complex compared to cationic complex. The reduction processes occur at the ligands and do not depend on the charge of the complexes. The electrochemical behavior in CO2 saturated media is consistent with CO2 electrocatalyzed reduction, where the values of the catalytic activity [icat(CO2)/icat(Ar)] ranged from 2.7 to 11.5 (compared to 8.1 for fac-[Re(CO)3Cl(bipy)] studied as a reference). Controlled potential electrolysis for the pyrazole cationic (3a) and neutral (4a) complexes after 1 h affords CO in faraday yields of 61 and 89%, respectively. These values are higher for indazole complexes and may be related to the acidity of the coordinated pyrazole.
Merillas, B.; Cuéllar, E.; Diez-Varga, A.; Torroba, T.; García-Herbosa, G.; Fernández, S.;Lloret-Fillol, J. Martín-Alvarez, J. M.; Miguel, D.; Villafañe, F.
Inorg. Chem. 2020, 59, (15), 11152–11165
DOI:
10.1021/acs.inorgchem.0c01654
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements