We report the synthesis of unprecedented tetra-urea derivatives of calix[4]arene and calix[4]pyrrole containing four spiropyran (SP) units at their upper rim. We investigate the photo- and acid-induced isomerization of the monomeric and homo-dimeric tetra-ureas derivatives using UV-Vis and 1H NMR spectroscopies. At micromolar concentration, irradiation of the samples with 365 nm light induces changes in their absorption spectra that are consistent with SP→merocyanine (MC) isomerization. However, analogous experiments at millimolar concentration do not produce noticeable changes in the 1H NMR spectra. The addition of triflic acid to micromolar and millimolar solutions of the tetra-ureas produces the quantitative isomerization of the SP units to the protonated merocyanine form (E-MCH+) and the simultaneous disassembly of the capsular dimers to form ill-defined aggregates. The neutralization of the acid solutions resets the SP form. Under these acid/base treatment conditions, the controlled release of the included guest and the reassembly of the all-SP tetra-urea dimers occurs at different extents depending on its calix[4]arene or calix[4]pyrrole scaffold.
Hydrogen-Bonded Dimeric Capsules with Appended Spiropyran Units: Towards Controlled Cargo Release
GO TO OPEN ACCESS
Chem. Eur. J. 2021, 27 (49), 12675-12685, DOI: 10.1002/chem.202101643.
* This article, published in Chemistry – A European Journal, is among the most downloaded papers