We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.
The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ...
Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.
Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.
Other cookies are those that are being identified and have not been classified into any category as yet.
Energy has been a central subject for human development from Homo erectus to date. The massive use of fossil fuels during the last 50 years has generated a large CO2 concentration in the atmosphere that has led to the so-called global warming. It is very urgent to come up with C-neutral energy schemes to be able to preserve Planet Earth for future generations to come and still preserve our modern societies’ life style. One of the potential solutions is water splitting with sunlight (hν-WS) that is also associated with “artificial photosynthesis”, since its working mode consists of light capture followed by water oxidation and proton reduction processes. The hydrogen fuel generated in this way is named as “solar fuel”. For this set of reactions, the catalytic oxidation of water to dioxygen is one of the crucial processes that need to be understood and mastered in order to build up potential devices based on hν-WS. This tutorial describes the different important aspects that need to be considered to come up with efficient and oxidatively robust molecular water oxidation catalysts (Mol-WOCs). It is based on our own previous work and completed with essential contributions from other active groups in the field. We mainly aim at describing how the ligands can influence the properties of the Mol-WOCs and showing a few key examples that overall provide a complete view of today’s understanding in this field.
P. Garrido-Barros, C. Gimbert-Suriñach, R. Matheu, X. Sala, A. Llobet
Chem. Soc. Rev. 2017, 46, 6088-6098
DOI:
10.1039/C7CS00248C
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements