High photo-current in solution processed organic solar cells based on a porphyrin core A-p-D-p-A as electron donor material

Two new conjugated acceptor-donor-acceptor (A-π-D-π-A) molecules with a porphyrin core linked by ethynylene bridges to two thiophene (1a) or thienylenevinylenethiophene (1b) units and both capped by N-ethylrhodanine have been synthesized. These compounds were used as the main electron donor moieties for bulk heterojunction small molecule organic solar cells (BHJ-SMOSC). The optimized devices, with PC71BM as the main electron acceptor molecule, show remarkable short circuit currents, up to 13.2 mA/cm2, an open circuit voltage of around 0.85 V, and power conversion efficiencies up to 4.3% under 100 W/cm2. The External Quantum Efficiency (EQE), Atomic Force Microscopy (AFM), hole mobility, Photo-Induced Charge Extraction (PICE) and Photo-Induced Transient Photo-Voltage (PIT-PV) were analyzed in devices based on 1a and 1b in order to account for differences in the final performance of the two molecules. The PIT-PV decays showed slower recombination kinetics for devices fabricated with 1b. Moreover, the EQE was greater for 1b and this is ascribed to the better nanomorphology, which allows better charge collection before carrier recombination takes place.

 

Organic electronics EP

Núria F. Montcada, Susana Arrechea, Agustín Molina-Ontoria, Ana I. Aljarilla, Pilar de la Cruz, Luis Echegoyen, Emilio Palomares, Fernando Langa

Organic Electronics 2016, 38, 330-336
DOI: Go to the journal

Associated ICIQ research group/s:

  • RESEARCH GROUP/S
    Prof. Emilio Palomares
Go to the journal
  • SHARE

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: