We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.
The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ...
Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.
Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.
Other cookies are those that are being identified and have not been classified into any category as yet.
The present work uncovers the oxidative transformations of a recently reported polypyridyl phosphonate–phenoxo Ru-based water oxidation catalyst [RuIII(tPaO-κ-N2OPOC)(py)2]2–, 22– {tPaO5– is the 3-(hydroxo-[2,2′:6′,2″-terpyridine]-6,6″-diyl)bis(phosphonate)}, under turnover conditions. We show how the catalyst 22– suffers from oxidative degradation during water oxidation catalysis and generates the phosphonate–carboxylate Ru complex [RuII(Hbpc)(py)2], 3H, where bpc3– is 6′-phosphonato-[2,2′-bipyridine]-6-carboxylate. Complex 3H has been prepared by three different methods, and its oxidative transformations were also studied in detail. Under turnover conditions, complex 3H undergoes a series of transformations that can be monitored by electrochemical techniques including the generation of catalytically active molecular water oxidation catalyst intermediates and RuO2. In addition, catalytically inactive species such as [RuII(bpc-κ-N2OP)2] have also been detected.
Vereshchuk, N.; Holub, J.; Gil-Sepulcre, M.; Benet-Buchholz, J.; Llobet, A.
ACS Catal. 2021, 11, 5240–5247
DOI:
10.1021/acscatal.0c05363
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements