Correlation between the Selectivity and the Structure of an Asymmetric Catalyst Built on a Chirally Amplified Supramolecular Helical Scaffold

For the first time, supramolecular helical rods composed of an achiral metal complex and a complementary enantiopure monomer provided a good level of enantioinduction in asymmetric catalysis. Mixtures containing an achiral ligand monomer (BTAPPh2, 2 mol %) and an enantiopure ligand-free comonomer (ester BTA, 2.5 mol %), both possessing a complementary benzene-1,3,5-tricarboxamide (BTA) central unit, were investigated in combination with [Rh(cod)2]BArF (1 mol %) in the asymmetric hydrogenation of dimethyl itaconate. Notably, efficient chirality transfer occurs within the hydrogen-bonded coassemblies formed by BTA Ile and the intrinsically achiral catalytic rhodium catalyst, providing the hydrogenation product with up to 85% ee. The effect of the relative content of BTA Ile as compared to the ligand was investigated. The amount of chiral comonomer can be decreased down to one-fourth of that of the ligand without deteriorating the enantioselectivity of the reaction, while the enantioselectivity decreases for mixtures containing high amounts of BTA Ile. The nonlinear relationship between the amount of chiral comonomer and the enantioselectivity indicates that chirality amplification effects are at work in this catalytic system. Also, right-handed helical rods are formed upon co-assembly of the achiral rhodium complex of BTAPPh2 and the enantiopure comonomer BTA Ile as confirmed by various spectroscopic and scattering techniques. Remarkably, the major enantiomer and the selectivity of the catalytic reaction are related to the handedness and the net helicity of the coassemblies, respectively. Further development of this class of catalysts built on chirally amplified helical scaffolds should contribute to the design of asymmetric catalysts operating with low amounts of chiral entities.

A. Desmarchelier, X. Caumes, M. Raynal, A. Vidal-Ferran, P. W. N. M. van Leeuwen, L. Bouteiller

J. Am. Chem. Soc. 2016, 138, 4908-4916
DOI: Go to the journal

Associated ICIQ research group/s:

  • RESEARCH GROUP/S
    Prof. Anton Vidal
Go to the journal
  • SHARE

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: