Consent Preferences
Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Other cookies are those that are being identified and have not been classified into any category as yet.

No cookies to display.

Controlled Synthesis of Bioderived Poly(limonene carbonate)-Oligolysine Hybrid Macromolecules

A straightforward and stepwise functionalization of poly(limonene carbonate) (PLC) was achieved through the use of thiol-ene click chemistry introducing primary amine groups. These amines are initiating points for N-carboxy anhydride (NCA) ring-opening polymerization (ROP) reactions, allowing us to modify the PLC backbone with oligolysine fragments, thereby creating a polymer brush type macromolecule. These newly prepared biohybrid structures show a clear hydrophilic behavior as evident from their physical behavior and contact angle measurements.

Skoulas, D.; Tolentino, A.; Kleij, A. W.

ACS Macro Lett. 2023, 13, 1332–1337
DOI: 10.1021/acsmacrolett.4c00461

Associated ICIQ research group/s:

Go to the journal
  • SHARE

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: