CO2 hydrogenation to methanol at pressures up to 950 bar

The methanol synthesis from CO2 hydrogenation is of great interest because it offers a way to mitigate the anthropogenic CO2 emissions and gives the opportunity to produce methanol from renewable and recyclable feedstock. Methanol is a key component in the chemical industry and can serve as fuel. In this work the high pressure approach of the transformation of CO2 to methanol is investigated based on the energy balance for the production of 1 Mt methanol per year from air-captured CO2 and hydrogen from water electrolysis. The energy efficiency is almost pressure independent and is comparable to literature values. The energy consumption for the compression of CO2 and H2 accounts only for 26% of the total energy consumption. Experimental investigations of the CO2 hydrogenation at 950 bar show up to 15 times larger methanol space time yields (STYmethanol) compared to literature values where CO2 was hydrogenated to methanol at 30 bar.

CO2 hydrogenation to methanol at pressures up to 950 bar

B. Tidona, C. Koppold, A. Bansode, A. Urakawa, P.R. von Rohr

J. of Supercritical Fluids 2013, 78, 70-77
DOI: Go to the journal

Associated ICIQ research group/s:

  • RESEARCH GROUP/S
    Prof. Atsushi Urakawa
Go to the journal
  • SHARE

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: