Consent Preferences
Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Other cookies are those that are being identified and have not been classified into any category as yet.

No cookies to display.

Potentiometric detection of creatinine in the presence of nicotine: Molecular recognition, sensing and quantification through multivariate regression,

Systematic errors in the calix [4] pyrrole-based potentiometric detection of creatinine have been observed in heavy smokers. This work further characterizes the interactions between the nicotinium cation and the cavitand as well as the resulting interference produced during the potentiometric detection. It is found that the nicotinium cation binds the electronic rich aromatic cavity defined by the pyrrole rings of the receptor’s cone conformation with an estimated binding constant higher than 10−4 M−1 in methylene chloride. On the other hand, the creatininium cation is preferentially included in the hydrophobic aromatic cavity of the ionophore by establishing hydrogen bond interactions with the pyrrole NHs groups. Potentiometric calibrations confirmed the detection of the nicotinium cation at neutral and acidic pH, respectively. Due to the lower pka of creatinine, a methodology to quantify creatinine in presence of nicotine by using an array of three sensors at two pH values is proposed. A partial least squares regression was performed and reported recoveries of 103% with a standard deviation of 20%. The improved determination of creatinine was therefore discussed. This approach represents a step forward in the development of effective approaches to improve the measurement of creatinine in decentralized settings.

Corbaad, A.; Sierra, A. F.; Blondeau, P.; Giussani, B.; Riu, J.; Ballester, P.; Andrade, F. J.

Talanta 2022, 246, 123473
DOI: 10.1016/j.talanta.2022.123473

Associated ICIQ research group/s:

Go to the journal
  • SHARE

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: