Consent Preferences
Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Other cookies are those that are being identified and have not been classified into any category as yet.

No cookies to display.

Mitigation of Carbon Crossover in CO2 Electrolysis by Use of Bipolar Membranes

The selectivity of CO2 electrolyzers has hitherto mainly been associated with the cathode selectivity. A few recent studies have shown that the nature of the polymer membrane can impact the system ionic selectivity, with anion exchange membranes (AEM) leading to high crossover of (bi)carbonates during operation and a CO2 pumping effect. In the present work, we investigate and compare CO2 crossover during operation through an AEM and a bipolar membrane (BPM) in a flow cell fed with gaseous CO2. With AEM, starting with 1 M KHCO3 catholyte and 1 M KOH anolyte, the anolyte pH rapidly drops from 14 to 8. This triggers an increase of 1.2 V in cell voltage at 45 mA·cm−2, due to increased OER overpotential and anolyte resistance. Steady-state operation at 45 mA·cm−2 with the AEM results in a CO2/O2 ratio of 3.6 at the anode. With BPM, the anolyte pH decreases more slowly, and the CO2/O2 ratio at the anode under steady-state at 45 mA·cm−2 is only 0.38. Overall, the cell voltage is lower with the BPM than with the AEM at steady-state. These results show the potential of BPMs to mitigate carbon crossover, which could be further reduced by optimizing their design.

Eriksson, E.; Asset, T.; Spanu, F.; Lecoeur, F.; Dupont, M.; Garcés-Pineda, F. A.; Galán-Mascarós, J. R.; Cavaliere, S.; Rozière, J.; Jaouen, F.

J. Electrochem. Soc. 2022, 169 (3),
DOI: 10.1149/1945-7111/ac580e

Associated ICIQ research group/s:

Go to the journal
  • SHARE

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: