We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.
The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ...
Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.
Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.
Other cookies are those that are being identified and have not been classified into any category as yet.
Micro/nano biomimetic systems that convert energy from the surroundings into mechanical motion have emerged as promising tools to enhance the efficiencies of different biomedical and environmental processes. The inclusion of multiple engines into the same device has become a promising strategy to achieve dual/triple stimuli responses. Such hybrid micro/nanoswimmers combining different propulsion forces exhibit advanced motion behaviors and different physical features that are interesting not only to achieve strong propulsion capabilities in complex environments but also to modulate their movement according to the intended use. The development of hybrid systems that can be actuated by both light and biocompatible fuels is of particular interest. This minireview covers the main types of photoactive/biocatalytic micro/nanoswimmers developed so far. Their main photoresponsive and enzymatic components are discussed along with the most representative designs. The applicability of such hybrid machines for analyte sensing, antibacterial and therapeutical uses are also described. The remaining challenges and opportunities are then explored.
Khezri, B.; Villa, K.
Chem. Asian J. 2022
DOI:
10.1002/asia.202200596
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements