A logic gate has been implemented in a single trinaphthylene molecule. Each logical input controls the position of a surface Au atom that is brought closer or further away from the end of one of the naphthyl branch. Each Au atom carries 1 bit of information and is able to deform nonlocally and to shift in energy the molecular electronic states of the trinaphthylene. Probed at the end of the third naphthyl branch using scanning tunneling spectroscopy, the variations of the tunneling current intensity as a function of the Au atoms position measures the logical output of the gate. We demonstrate both theoretically and experimentally that these variations respect the truth table of a NOR logic gate.
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements