We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.
The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ...
Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.
Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.
Other cookies are those that are being identified and have not been classified into any category as yet.
Ni-catalysed functionalization of strong sigma C–O bonds has become an innovative alternative for forging C–C bonds from simple and readily available phenol-derived precursors. However, these methodologies are poorly understood in mechanistic terms. Here we provide mechanistic knowledge about how Ni catalysts enable sp2–sp2 bond formation between aryl esters and arylzinc species by providing reliable access to on-cycle mononuclear oxidative addition species of aryl esters to Ni(0) complexes bearing monodentate phosphines with either κ1– or κ2-O binding modes. While studying the reactivity and decomposition pathways of these complexes, we have unravelled an intriguing dichotomy exerted by Zn(II) salts that results in parasitic ligand scavenging, oxidation events and NiZn clusters. We provide evidence that coordinating solvents and ligands disrupt these processes, thus offering knowledge for designing more-efficient Ni-catalysed reactions and a useful entry point to unravel the mechanistic intricacies of related processes.
Day, C. S.; Somerville, R. J.; Martin, R.
Nat Catal 2021, 4, 124–133
DOI:
10.1038/s41929-020-00560-3
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements