Catalytic transformation of carbon dioxide into seven-membered heterocycles and their domino transformation into bicyclic oxazolidinones

Converting carbon dioxide (CO2) into valuable heterocycles is of great synthetic value but is usually limited to five- and six-membered ring compounds. Here, we report a catalytic approach for transforming this carbon renewable into seven-membered heterocycles using a double-stage approach, combining a silver-catalyzed alkyne/CO2 coupling and a subsequent base-catalyzed ring-expansion. This methodology avoids the formation of thermodynamically more stable, smaller-ring by-products and has good functional group tolerance. The synthetic application of these larger-ring cyclic carbonates is further demonstrated by showing their unique ability to serve as synthons for the preparation of bicyclic oxazolidinone pharmacores through an intramolecular domino sequence that involves a transient ketimine group, and various other intermolecular transformations. The results described herein significantly expand on the use of CO2 as a cheap and versatile carbon feedstock generating elusive heterocycles and pharmaceutically relevant compounds.

Shi, W.; Benet-Buchholz, J.; Kleij, A. W.

Nat. Commun. 2025, 16, 1372
DOI: 10.1038/s41467-025-56681-5

Associated ICIQ research group/s:

Go to the journal

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: