Consent Preferences
Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Other cookies are those that are being identified and have not been classified into any category as yet.

No cookies to display.

ADAMoX

Analysis of Dynamics and Amorphization of Metal oxides (MOx)

Grant description

The ADAMox project, “Analysis of Dynamics and Amorphization of Metal Oxides (MOx),” addresses a critical need in catalysis, particularly for the shift from traditional fossil fuels to clean and renewable energy sources, aligning with the European Green Deal’s sustainability goals.

MOx catalysts play a central role in these chemical transformations, but their structural complexity poses challenges in designing efficient catalysts. Therefore, ADAMox leverages advanced computational methods to explore the structural dynamics of MOx catalysts during operando conditions. This project aims to uncover vital structure-activity relationships, offering theoretical guidance to advance high-performance catalysts. Key objectives include understanding the formation of disordered/amorphous ensembles on MOx surfaces, exploring structure-activity relationships in catalytic reactions, and developing a universal operando simulation workflow for thermos/electro-chemical catalytic systems.

The interdisciplinary approach integrates computational chemistry, machine learning, and experimental techniques, enhancing the fundamental understanding of heterogenous catalysis. Furthermore, this project adheres to open science practices, ensuring transparency and collaboration within the scientific community. For the researcher, Dr. Li, under the guidance of Prof. Núria López at ICIQ, this project offers her a unique scientific career development opportunity to excel in a traditionally male-dominated area. It provides a platform to contribute to groundbreaking research while championing openness and diversity in science. In summary, ADAMox advances catalysis for clean energy and sustainable processes, offering exciting career prospects for the researcher while promoting open science and gender diversity in research.

 

This project has received funding from the European Union’s Horizon Europe research and innovation program under grant agreement 101149049.

Dr. Lulu Li obtained her Ph.D. in the School of Chemical Technology from Tianjin University, China, in 2023, under the joint guidance of Prof. Jinlong Gong and Prof. Zhi-Jian Zhao. She is currently engaged in postdoctoral research under the guidance of Prof. Núria López since October 2023. Her research is centered on the exploration of the dynamic evolution of metal oxide catalysts during catalytic reactions, utilizing advanced techniques such as machine learning and first-principles calculations to advance the understanding of structure-performance relations inherent in these processes.

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: