Consent Preferences
Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Other cookies are those that are being identified and have not been classified into any category as yet.

No cookies to display.

Taming defective porous materials for robust and selective heterogeneous catalysis

6th May 2019 – The production of 1-butene via ethylene dimerization is one of the few industrial processes that employs homogeneous catalysis due to their high selectivity—despite the massive amounts of activators and solvents required. Now, a new paper by the University of the Basque Country (UPV/EHU), in collaboration with the López group at the Institute of Chemical Research of Catalonia (ICIQ) and RTI International, shows a more sustainable alternative via metal–organic frameworks (MOFs), a family of porous materials formed by metallic nodes connected through organic ligands.

The scientists demonstrate that tailored MOFs under condensation regimes catalyze the ethylene dimerization to 1-butene with high selectivity and stability in the absence of activators and solvent. The research, published in Nature Communications, opens new avenues to develop robust heterogeneous catalysts for a wide variety of gas-phase reactions.

Representation of the (Ru)HKUST-1 MOF. Credit: Manuel A. Ortuño

Representation of the (Ru)HKUST-1 MOF. Credit: Manuel A. Ortuño

Know your defects…

The researchers have engineered defects in the MOF (Ru)HKUST-1 without compromising the framework structure via two strategies: a conventional ligand exchange approach during MOF synthesis and a pioneering post-synthetic thermal approach. The researchers then characterized the defects — which have been shown to be catalytically active for ethylene dimerization.

Thanks to the computational resources of the Barcelona Supercomputing Center (BSC), which belongs to the ”Red Española de Supercomputación” (RES), the researchers were able to simulate realistic MOF systems to characterize the defects and compute the reaction mechanism. They found that unsaturated metal centers induced by defects drive activity, while the bimetallic nature of the node controls selectivity. After testing the catalytic performance of the system, they next improved the recyclability and robustness of the catalyst through one crucial condition: intrapore condensation.

…and fill the pores

Production of 1-butene via ethylene dimerization occurs in gas phase. When the reaction happens at low reactant pressure, some catalytic sites get deactivated due to the coordination of oligomers. But as pressure increases, the reactant molecules can condensate inside the pores of the material. Such a concentration effect avoids deactivation thus enhancing the stability of the catalyst.

The next steps of the project would involve the use of MOF catalysts based on first-row transition metals as well as the application of the novel intrapore condensation strategy to other gas-phase reactions.

“Gas reactions under intrapore condensation regime within tailored metal–organic framework catalysts” Iker Agirrezabal-Telleria, Ignacio Luz, Manuel A. Ortuño, Mikel Oregui-Bengoechea, Iñaki Gandarias, Núria López, Marty A. Lail and Mustapha Soukri, Nature Communications, 10, Article number: 2076 (2019)

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: