Invited Seminar
calendar 17/11/2022
clock 16:30
  • Lecturer: Prof. Marcella Bonchio
  • University: Department of Chemical Sciences, INSTM unit of Padova, University of Padova, Italy

Supramolecular Quantasomes for Artificial Photosynthesis

In the early studies, on Oxygenic Photosynthesis, the “quantasome hypothesis” led to seminal discoveries correlating the structure of natural photosystems  with their complementary photo-redox functions.[1,2] Indeed, and despite the vast bio-diversity footprint, just one protein complex is used by Nature as the H2O-photolyzer: photosystem II (PSII). Man-made systems are still far from replicating the complexity of PSII, showing the ideal co-localization of Light Harvesting antennas with the functional Reaction Center (LH-RC). Here we report the design of multi-perylenebisimide (PBI) networks shaped to function by interaction with a polyoxometalate water oxidation catalyst (Ru4POM).[3-5] Our results point to overcome the classical “photo-dyad” model, based on a donor-acceptor binary combination, with integrated artificial “quantasomes” formed both in solution and on photoelectrodes, showing a: (i) red-shifted, light harvesting efficiency (LHE>40%), (ii) favorable exciton accumulation and negligible excimeric loss; (iii) a robust amphiphilic structure; (iv) dynamic aggregation into large 2D-paracrystalline domains.[5] Photoexcitation of the PBI-quantasome triggers one of the highest driving force for photo-induced electron transfer applied so far.[5-7]

 

References

[1] Scheuring, S., Sturgis, J. N. Chromatic Adaptation of Photosynthetic Membranes. Science 309, 484–487 (2005);

[2] Sartorel, A., Carraro, M., Toma, F. M., Prato, M., Bonchio, M. Shaping the beating heart of artificial photosynthesis: oxygenic metal oxide nano-clusters. Energy Environ. Sci. 5, 5592 (2012);

[3] Piccinin, S.; Sartorel, A.; Aquilanti, G.; Goldoni, A.; Bonchio, M.; Fabris, S. Water oxidation surface mechanisms replicated by a totally inorganic tetraruthenium-oxo molecular complex. Proc. Natl. Acad. Sci. 110, 4917–4922 (2013)

[4] Toma, F. M.; Prato, M.; Bonchio, M. et al. Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nature Chemistry 2, 826-831 (2010).

[5] Bonchio, M.; Sartorel, A.; Prato, M. et al. Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation. Nature Chemistry 11, 146-153 (2019).

[6] Gobbo, P.; Bonchio, M.; Mann, S. et al. Catalytic processing in ruthenium-based polyoxometalate coacervate protocells Nature Commun 11, 41 (2020).

[7] GobbatoT.; Rigodanza F.; Benazzi, E.; Prato, M.; Bonchio M. et al. J. Am. Chem. Soc.144,14021-14025 (2022).

 

Other events

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: