Consent Preferences
Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Other cookies are those that are being identified and have not been classified into any category as yet.

No cookies to display.

PhD Thesis
calendar 11/07/2022
clock 15:30 h
location ICIQ Auditorium Prof. Dr. Kilian Muñiz & Zoom
  • Lecturer: Sergio Pablo García Carrillo
  • Supervisor: Prof. Núria López

More is Different: Modern Computational Modeling for Heterogeneous Catalysis

The combination of Experimental observations and Density Functional Theory studies is one of the pillars of modern chemical research. As they enable the collection of additional physical information of a chemical system, hardly accessible via the experimental setting, Density Functional Theory studies are widely employed to model and predict the behavior of a diverse variety of chemical compounds under unique environments. Particularly, in heterogeneous catalysis, Density Functional Theory models are commonly employed to evaluate the interaction between molecular compounds and catalysts, lately linking these interpretations with experimental results. However, high complexity found in both, catalytic settings and reactivity, implies the need of sophisticated methodologies involving automation, storage and analysis to correctly study these systems. Here, I present the development and combination of multiple methodologies, aiming at correctly asses complexity. Also, this work shows how the provided techniques have been actively used to study novel catalytic settings of academic and industrial interest.

This thesis presents a set of tools to ease the computational study of catalytic systems, as well as their combination to solve high complexity problems. I successfully tested these tools on different production environments to evaluate their usability and accuracy, being able to automate DFT calculations, identify chemical descriptors, make activity predictions and explore complex neural network. This works paves the way in the use of computational tools to deal with the high complexity growth found in heterogeneous catalysis.

 

If you are interested in attending in the Auditorium and are not from ICIQ, please fill in this registration form

To follow the ceremony in a virtual format, please register here.

Other events

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: