Hydrogenative Carbon Dioxide Reduction Catalyzed by Mononuclear Ruthenium Polypyridyl Complexes: Discerning between Electronic and Steric Effects

The preparation and isolation of a family of new Ru-Cl complexes containing the deprotonated anionic tridentate meridional ligand (1Z,3Z)-N1,N3-di(pyridin-2-yl)isoindoline-1,3-diimine (Hbid) and 1,3-di(2-pyridyl)benzene) (Hdpb) namely, [Ru(bid)(acac)Cl], 1d, [Ru(bid)(6,6’-Me2-bpy)Cl], 1e, trans-[Ru(bid)(py)2Cl], 2, [Ru(dpb)(bpy)Cl], 3a, and [Ru(dpb)(4,4’-(COOEt)2-bpy)Cl], 3b is reported. All these complexes have been thoroughly characterized in solution by NMR spectroscopy and for 1d and 1e by single crystal X-ray diffraction analysis. Furthermore, the redox properties of all complexes have been investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The capacity of the various complexes to catalyze hydrogenative CO2 reduction was also investigated. Compound 1e is the best catalyst, achieving initial turnover frequencies above 1000 h–1. Kinetic analysis identifies a relationship between Ru(III/II) couple redox potentials and initial turnover frequencies. Finally, DFT calculations further characterize the catalytic cycle of these complexes and rationalize electronic and steric effects deriving from the auxiliary ligands.

Random publication image

T. Ono, S. Qu, C. Gimbert-Suriñach, M.A. Johnson, D.J. Marell, J. Benet-Buchholz, C.J. Cramer, A. Llobet

ACS Catal. 2017, 7, 5932-5940
DOI: 10.1021/acscatal.7b00603

Associated ICIQ research group/s:

  • RESEARCH GROUP/S
    Prof. Antoni Llobet
Go to the journal
  • SHARE

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: