Bifunctional Tripeptide with a Phosphonic Acid as a Bronsted Acid for Michael Addition: Mechanistic Insights

Enamine catalysis is a widespread activation mode in the field of organocatalysis and is often encountered in bifunctional organocatalysts. We previously described H-Pro-Pro-pAla-OMe as a bifunctional catalyst for Michael addition between aldehydes and aromatic nitroalkenes. Considering that opposite selectivities were observed when compared to H-Pro-Pro-Glu-NH2, an analogue described by Wennemers, the activation mode of H-Pro-Pro-pAla-OMe was investigated through kinetic, linear effect studies, NMR analyses, and structural modifications. It appeared that only one bifunctional catalyst was involved in the catalytic cycle, by activating aldehyde through an (E)-enamine and nitroalkene through an acidic interaction. A restrained tripeptide structure was optimal in terms of distance and rigidity for better selectivities and fast reaction rates. Transition-state modeling unveiled the particular selectivity of this phosphonopeptide.

Random publication image

M. Cortes-Clerget, J. Jover, J. Dussart, E. Kolodziej, M. Monteil, E. Migianu-Griffoni, O. Gager, J. Deschamp, M. Lecouvey

Chem. Eur. J. 2017, 23 (27), 6654-6662
DOI: 10.1002/chem.201700604

  • SHARE

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: