Nature of Noncovalent Carbon-Bonding Interactions Derived from Experimental Charge-Density Analysis

In an effort to better understand the nature of noncovalent carbon-bonding interactions, we undertook accurate high-resolution X-ray diffraction analysis of single crystals of 1,1,2,2-tetracyanocyclopropane. We selected this compound to study the fundamental characteristics of carbon-bonding interactions, because it provides accessible σ holes. The study required extremely accurate experimental diffraction data, because the interaction of interest is weak. The electron-density distribution around the carbon nuclei, as shown by the experimental maps of the electrophilic bowl defined by a (CN)2C[BOND]C(CN)2 unit, was assigned as the origin of the interaction. This fact was also evidenced by plotting the Δ2ρ(r) distribution. Taken together, the obtained results clearly indicate that noncovalent carbon bonding can be explained as an interaction between confronted oppositely polarized regions. The interaction is, thus electrophilic–nucleophilic (electrostatic) in nature and unambiguously considered as attractive.

Random publication image

E. C. Escudero-Adán, A. Bauzá, A. Frontera, P. Ballester

ChemPhysChem 2015, 16, 2530-2533
DOI: Go to the journal

Associated ICIQ research group/s:

  • RESEARCH GROUP/S
    Prof. Pau Ballester
Go to the journal
  • SHARE

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: