We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.
The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ...
Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.
Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.
Other cookies are those that are being identified and have not been classified into any category as yet.
We report a photochemical method for the functionalization of pyridines with radicals derived from allylic C–H bonds. Overall, two substrates undergo C–H functionalization to form a new C(sp2)–C(sp3) bond. The chemistry harnesses the unique reactivity of pyridinyl radicals, generated upon single-electron reduction of pyridinium ions, which undergo effective coupling with allylic radicals. This novel mechanism enables distinct positional selectivity for pyridine functionalization that diverges from classical Minisci chemistry. Crucial was the identification of a dithiophosphoric acid that masters three catalytic tasks, sequentially acting as a Brønsted acid for pyridine protonation, a single electron transfer (SET) reductant for pyridinium ion reduction, and a hydrogen atom abstractor for the activation of allylic C(sp3)–H bonds. The resulting pyridinyl and allylic radicals then couple with high regioselectivity.
Le Saux, E.; Georgiou, E.; Dmitriev, I. A.; Hartley, W. C.; Melchiorre, P.
J. Am. Chem. Soc. 2022, 145 (1), 47-52
DOI:
10.1021/jacs.2c12466
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements