We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.
The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ...
Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.
Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.
Other cookies are those that are being identified and have not been classified into any category as yet.
The illicit use of anabolic androgenic steroids (AAS) as performance-enhancing drugs remains a global issue threatening not only the credibility of competitive sports but also public health due to the well-documented adverse effects they elicit. AAS abuse is not restricted only to professional sports, but also extends to recreational athletes and adolescents as well as in livestock production as growth-promoting agents. Testosterone and nandrolone are among the AAS most frequently exploited. Gas chromatography-mass spectrometry is the reference method for AAS detection, but it is strictly laboratory-based and cannot be performed on-site. The great potential of aptamers in bioanalytical applications and specifically for the development of simple analytical tools suitable for on-site analysis has been extensively documented. In this report, we describe the selection and identification of aptamers binding nandrolone, exhibiting affinity dissociation constants in the low nanomolar range. A label-free colorimetric assay based on gold nanoparticles was developed using one of these novel aptamers for the detection of nandrolone and/or its metabolites. The assay could be deployed for the rapid, on-site, facile and cost-effective screening of samples and provide qualitative visual results with a red to purple/blue color change being indicative of a positive result.
Shkembia, X.; Botero, M. L.; Skouridou, V.; Jauset-Rubio, M.; Svobodova, M.; Ballester, P.; Bashammak, A. S.; El-Shahawic, M. S.; Alyoubic, A. O.; O'Sullivan, C. K.
Anal. Biochem. 2022, 658, 114937
DOI:
10.1016/j.ab.2022.114937
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements