We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.
The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ...
Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.
Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.
Other cookies are those that are being identified and have not been classified into any category as yet.
C–C bond forming cross-couplings are convenient technologies for the construction of functional molecules. Consequently, there is continual interest in approaches that can render traditionally inert functionality as cross-coupling partners, included in this are ketones which are widely-available commodity chemicals and easy to install synthetic handles. Herein, we describe a dual catalytic strategy that utilizes dihydroquinazolinones derived from ketone congeners as adaptative one-electron handles for forging C(sp3) architectures via α C–C cleavage with aryl and alkyl bromides. Our approach is achieved by combining the flexibility and modularity of nickel catalysis with the propensity of photoredox events for generating open-shell reaction intermediates. This method is distinguished by its wide scope and broad application profile––including chemical diversification of advanced intermediates––, providing a catalytic technique complementary to existing C(sp3) cross-coupling reactions that operates within the C–C bond-functionalization arena.
Lv, X. Y.; Abrams, R.; Martin, R.
Nat. Commun. 2022, 13, 2394
DOI:
10.1038/s41467-022-29984-0
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements