We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.
The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ...
Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.
Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.
Other cookies are those that are being identified and have not been classified into any category as yet.
The synthesis of compounds having quaternary carbon centers through a catalytic stereo- and regioselective difunctionalization of 2-substituted 1,3-dienes remains elusive. Here, we present a dual Co/photoredox-catalyzed cascade approach that addresses this challenge using modular vinyl cyclic carbonates functioning as masked 2-aryl-1,3-diene surrogates. The latter species are conveniently prepared in situ and converted into nucleophilic Co(allyl) intermediates that are intercepted by aldehydes to afford homoallylic alcohols with ample scope in reaction partners. The developed protocol marks a significant step forward in the use of structurally versatile 1,3-dienes and their catalytic 1,2-hydroalkylation and 1,2-dicarbofunctionalization.
Xue, S.; Cristòfol, A.; Limburg, B.; Zeng, Q.; Kleij, A. W.
ACS Catal. 2022, 12, 3651–3659
DOI:
10.1021/acscatal.2c00660
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements