Consent Preferences
Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Other cookies are those that are being identified and have not been classified into any category as yet.

No cookies to display.

Elucidating Sulfide Activation Mode in Metal-Catalyzed Sulfoxidation Reactivity

Interest in the catalytic activation of peroxides, together with the requirement of stereoselectivity for the production of enantiopure sulfoxides, has made sulfoxidation the ideal playground for theoretical and experimental physical organic chemists investigating oxidation reactivity. Efforts have been dedicated for elucidating the catalytic pathway regarding these species and for dissecting out the dominant factors influencing the yield and stereochemistry. In this article, Ti(IV) and Hf(IV) aminotriphenolate complexes have been prepared and investigated as catalysts in the presence of peroxides in sulfide oxidation. Experimental results have been combined with theoretical calculations obtaining detailed mechanistic information on oxygen transfer processes. The study revealed that steric issues are mainly responsible for the formation of intermediates in the oxidation pathway. In particular, we could highlight the occurrence of a blended situation where the steric effects of sulfides, ligands, and oxidants influence the formation of different intermediates and reaction pathways.

Garay-Ruiz, D.; Zonta, C.; Lovat, S.; González-Fabra, J.; Bo, C.; Licini, G.

Inorg. Chem. 2022
DOI: 10.1021/acs.inorgchem.2c00037

Associated ICIQ research group/s:

Go to the journal
  • SHARE

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: