Surface-Promoted Evolution of Ru-bda Coordination Oligomers Boosts the Efficiency of Water Oxidation Molecular Anodes

A new Ru oligomer of formula {[RuII(bda-κ-N2O2)(4,4′-bpy)]10(4,4′-bpy)}, 10 (bda is [2,2′-bipyridine]-6,6′-dicarboxylate and 4,4′-bpy is 4,4′-bipyridine), was synthesized and thoroughly characterized with spectroscopic, X-ray, and electrochemical techniques. This oligomer exhibits strong affinity for graphitic materials through CH−π interactions and thus easily anchors on multiwalled carbon nanotubes (CNT), generating the molecular hybrid material 10@CNT. The latter acts as a water oxidation catalyst and converts to a new species, 10′(H2O)2@CNT, during the electrochemical oxygen evolution process involving solvation and ligand reorganization facilitated by the interactions of molecular Ru catalyst and the surface. This heterogeneous system has been shown to be a powerful and robust molecular hybrid anode for electrocatalytic water oxidation into molecular oxygen, achieving current densities in the range of 200 mA/cm2 at pH 7 under an applied potential of 1.45 V vs NHE. The remarkable long-term stability of this hybrid material during turnover is rationalized based on the supramolecular interaction of the catalyst with the graphitic surface.

Gil-Sepulcre, M.; Lindner, J. O.; Schindler, D.; Velasco, L.; Moonshiram, D.; Rüdiger, O.; DeBeer, S.; Stepanenko, V.; Solano, E.; Würthner, F.; Llobet, A.

J. Am. Chem. Soc. 2021, 143, (30), 11651–11661
DOI: 10.1021/jacs.1c04738

Associated ICIQ research group/s:

  • RESEARCH GROUP/S
    Prof. Antoni Llobet
Go to the journal
  • SHARE

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: