We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.
The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ...
Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.
Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.
Other cookies are those that are being identified and have not been classified into any category as yet.
3rd December 2018 – In 1789, Antoine Lavoisier already used ‘radical’ in his Traité Élémentaire de Chimie – although the term had a slightly different meaning back then. Now, ICIQ researchers are still using radicals – molecules that have an unpaired ‘valence electron’, which makes them very reactive – to bring new synthetic strategies to chemists. “Radical chemistry offers unique ways of making molecules,” quips Paolo Melchiorre, ICIQ group leader and senior author of the paper published today in Nature Chemistry.
The ICIQ researchers have developed a photochemical catalytic strategy that generates carbon radicals from alkyl chlorides – linear organic molecules where all the C-C bonds are single – by exploiting their electrophilic properties. To make the strategy work, the scientists have adorned an organic catalyst with a chromophore unit to make it absorb visible light. The catalyst, by using a fundamental pathway of ionic chemistry, the SN2 substitution, can generate radical intermediates from a variety of chemically interesting molecules. “We can activate molecules that are inert to other strategies. All this is possible because of the catalyst and the mechanisms by which we activate the molecules,” explains Bertrand Schweitzer-Chaput, an ICIQ postdoctoral researcher part of the Melchiorre group.
As a proof of concept, the researchers have included in the paper the use of the new radical-generating catalytic strategy in the synthesis of complex structures of drug intermediates like Tolmetin, a non-steroidal anti-inflammatory drug. “The method, by providing a complementary way of generating radical intermediates, could be useful to expand the synthetic potential of radical chemistry,” explains Melchiorre.
Chemists use radical reactivity in organic synthesis, material science, and life science. Although traditional radical generating strategies are powerful, they usually require harsh conditions that can include high temperatures, UV-light irradiation, toxic or explosive agents, etc. The new strategy can be very attractive for synthetic chemists, as it provides a way to generate radicals under very mild conditions and in a catalytic manner.
“This method offers synthetic chemists a different strategy to plan the formation of radicals. As all strategies, it has clear limitations, since only stabilized radicals could be formed so far, but the underlying mechanism is completely orthogonal to established radical generation strategy. We will surely continue to investigate the potential of this approach and are curious to see where our future efforts will bring us” concludes Melchiorre.
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements