We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.
The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ...
Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.
Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.
Other cookies are those that are being identified and have not been classified into any category as yet.
21st May 2020 – Researchers from the Muñiz group have published a paper in Angewandte Chemie – International Edition presenting a new metal-free methodology for the photo-catalysed nucleophilic fluorination of aliphatic hydrocarbon bonds. Daniel Bafaluy, first author of the paper shares the story behind it:
What have you done?
The paper describes a new metal-free method to selectively introduce Fluor in aliphatic C-H bonds that can be applied to late-stage functionalisation. The current methodologies used to this purpose employ electrophilic Fluor reagents, but they present economic as well as environmental drawbacks. So, we decided to take a page from the group’s strategies to carry out aminations using an iodine oxidant and applied the know-how to develop nucleophilic fluorinations.
By using an iodine oxidant, we create in situ a nitrogen-iodine bond which we then photochemically break to create the nitrogen radical. Breaking that bond is quite easy because it’s a very labile species and doesn’t require much energy – a regular lightbulb is enough for this. The new strategy works under mild conditions and uses a (nucleophilic) ammonium fluoride as fluorine source and molecular Iodine as a catalyst to address position-selectivity and produce fewer by-products than the current electrophilic Fluor methods.
Since we employed the nitrogen functionality as the directing group, the strategy can be used on different amine derivatives. In general, we can control the position selectivity by means of the directing group choice and specifically insert the Fluor atom on tertiary positions. This way we gain access to two different kinds of compounds: 1,3 or 1,4 fluoroamines with the same protocol. For example, the reaction works in the presence of benzylic positions, heteroatoms in phenyl groups, etc.
Why is this important?
From a basic-research viewpoint, this work demonstrates that Iodine catalysis has a big potential to be further explored. We present a novel nucleophilic Fluor and metal-free strategy that combines the power of an Iodonium III oxidiser and photochemistry, which is unprecedented in the literature. Also, with our strategy, we selectively control the position where we will introduce the Fluor.
Finally, fluorinated compounds are important from a biological and pharmacological point of view, the presence Fluor enhances the bio-utility of these compounds as drugs or pesticides, among other applications. Unfortunately, their synthesis is quite complex. So, our new method can be quite useful for the late-stage functionalisation of organic molecules.
What’s next?
Aside from its use for late-stage-functionalisation, we would have liked to further optimise the process and apply it to radio-labelling for medical applications, like PET scans for instance. Some of the most common compounds used as radiotracers are molecules containing Fluor-18 isotope, which is generated in synchrotrons and has a 110-minute half-life time. This means the isotope must be rapidly inserted into the radiotracers before injecting it to the patient and doing the scan. Therefore, that needs to be a fast-paced procedure. Current methods use electrophilic Fluor but synchrotrons generate nucleophilic Fluor-18, so our new methodology could be easily adapted to fulfil these medical applications.
Reference paper:
An Iodine‐Catalysis Approach to C(sp3)‐H Fluorination with Nucleophilic Fluorine. Bafaluy, D.; Georgieva, Z.; Muñiz, K. Angew. Chem. Int. Ed. 2020 (DOI: 10.1002/anie.202004902).
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements