Consent Preferences
Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Other cookies are those that are being identified and have not been classified into any category as yet.

No cookies to display.

Golden route to semi-conductor materials

13th June 2019 – Polyacenes constitute a class of organic compounds composed by adjacent fused benzene rings. These compounds golden AEexhibit interesting electronic properties due to their high degree of conjugation which allows electrons to flow across the molecule. The high charge carrier mobility of these materials is used frequently in organic field-effect transistors and optoelectronic applications. Most commonly used acenes are tetracene (n=2) and pentacene (n=3). While longer linear acenes are expected to exhibit improved properties, their preparation has however proved highly challenging due to the instability of the formed products. The research Group of Prof. A. Echavarren at ICIQ has recently developed a new strategy for the preparation of long linear polyacenes based on the on-surface dehydrogenation of a partially saturated linear polyacene compound readily accessible through available raw materials and transition metal catalysis (gold and palladium mediated processes). As illustrated below, the group successfully reported the first preparation of nonacene (n=7) from readily available precursors.

imatge polyacenes3The findings in the preparation of nonacene from a partially hydrogenated derivative allows the development of semiconducting devices incorporating this oligoacene compound that exhibits a very low band gap of 1.19 eV (if compared with 1.84 eV for pentacene, and 2.54 eV for tetracene). This differential feature paves the way for the development of more efficient organic electronic devices, such as diodes (OLEDs), transistors (OTFTs, OFETs), and organic photovoltaics (OPVs). This technology is currently patent-pending in the United States of America. The research team has recently been awarded a Proof of Concept grant from the European Research Council in order to develop longer acenes (n=11, 13) and progress in the commercialization of this technology.

The provision of shelf-stable and readily accessible precursors of oligoacene compounds along with a straightforward method for their conversion into the polyaromatic compound that exhibit particularly low energy band gap and enhanced charge carrier mobility (presumably), pave the way towards a faster development of more efficient organic electronic devices for a broad number of applications. Industrial partners are sought for the testing and joint development of the technology through R&D collaborations.

1- Dorel, R.; McGonigal, P.R.; Echavarren,A.M.  Angew. Chem. Int. Ed. 2016, 55, 11120
2- Zuzak, R.; Dorel, R.; Krawiec, M.; Such, B.; Kolmer, M.; Szymonski, M.; Echavarren, A.M.; Godlewsk, S.  ACS Nano 2017, 9321-9329
3- Zuzak, R.; Dorel, R.; Kolmer, M.; Szymonski, M.; Godlewski, S.; Echavarren, A. M. Angew. Chem. Int. Ed. 2018, 57, 10500–10505.

Let's create a brighter future

Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements

Join us!
Board of Trustees:
Member of:
Accredited with:
With the support of: