We report a user-friendly approach for the decarboxylative formation of stereodefined and complex tri- and tetra-substituted olefins from vinyl cyclic carbonates and amines as radical precursors. The protocol relies on easy photo-initiated α-amino-radical formation followed by addition onto the double bond of the substrate resulting in a sequence involving carbonate ring-opening, double bond relay, CO2 extrusion and finally O-protonation. The developed protocol is efficient for both mismatched and matched polarity substrate combinations, and the scope of elaborate stereodefined olefins that can be forged including drug-functionalized derivatives is wide, diverse and further extendable to other types of heterocyclic and radical precursors. Mechanistic control reactions show that the decarboxylation step is a key driving force towards product formation, with the initial radical addition under steric control.
An Expedient Radical Approach for the Decarboxylative Synthesis of Stereodefined All-Carbon Tetrasubstituted Olefins
Angew. Chem. Int. Ed. 2024, e202403651, DOI: 10.1002/anie.202403651.