Experimental screening of Metal Organic Frameworks (MOFs) for separation applications can be costly and time-consuming. Computational methods can provide many benefits in this process, as expensive compounds and a wide range of operating conditions can be tested while crucial mechanistic insights are gained. TAMOF-1, a recently developed MOF, stands out for its exceptional stability, robustness and cost-effective synthesis. Its good CO2 uptake capacity makes it a promising agent for flue gas separation applications. In this work, we combine experiments with simulations at the atomistic and numerical level to investigate the adsorption and separation of CO2 and N2. Using Monte Carlo simulations, we accurately reproduce experimental adsorption isotherms and elucidate the adsorption mechanisms. TAMOF-1 effectively separates CO2 from N2 because of preferential binding sites near Cu2+ atoms. To assess separation performance in equilibrium at different conditions along the entire isotherm pressure range, adsorbed mole fractions, selectivities, and the trade-off between selectivity and uptake (TSN) are calculated. The dynamic separation performance is assessed by breakthrough experiments and numerical simulations, demonstrating efficient dynamic separation of CO2 and N2, with CO2 being retained in the column.
Gooijer, S.; Capelo-Aviles, S.; Sharma, S.; Giancola, S.; Galan-Mascaros, J. R.; Vlugt, T. J. H.; Dubbeldam, D.; Vicent-Luna, J. M.; Calero, S.
J. Mater. Chem. A 2025
DOI:
10.1039/d5ta01362c
In the road to sustainability, the treatment of post-combustion emissions is still far from being techno-economically viable. On one end, the low concentration of CO2 in these streams, precludes the use of current carbon capture (CC) technologies. On the other end, even if CC were successfully implemented, there are not plausible final uses, maybe except geological long-term storage. Our ambitious proposal aims to investigate the viability of a technology able to tackle these challenges at once. Our SUPERVAL technology will develop scientific solutions from low-cost, non-critical raw materials and processes, with the added value of removing/valorizing the NOx contaminants from flue gas.
See more
Join our team to work with renowned researchers, tackle groundbreaking
projects and contribute to meaningful scientific advancements